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ABSTRACT
The process of rank aggregation is intimately intertwined
with the structure of skew-symmetric matrices. We apply
recent advances in the theory and algorithms of matrix com-
pletion to skew-symmetric matrices. This combination of
ideas produces a new method for ranking a set of items. The
essence of our idea is that a rank aggregation describes a
partially filled skew-symmetric matrix. We extend an algo-
rithm for matrix completion to handle skew-symmetric data
and use that to extract ranks for each item. Our algorithm
applies to both pairwise comparison and rating data. Be-
cause it is based on matrix completion, it is robust to both
noise and incomplete data. We show a formal recovery result
for the noiseless case and present a detailed study of the
algorithm on synthetic data and Netflix ratings.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line in-
formation Services—Web-based services; G.1.3 [Numerical
analysis]: Numerical Linear Algebra—Singular value de-
composition

General Terms
Algorithms

Keywords
nuclear norm, skew symmetric, rank aggregation

1. INTRODUCTION
One of the classic data mining problems is to identify the

important items in a data set; see Tan and Jin [2004] for
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an interesting example of how these might be used. For
this task, we are concerned with rank aggregation. Given a
series of votes on a set of items by a group of voters, rank
aggregation is the process of permuting the set of items so
that the first element is the best choice in the set, the second
element is the next best choice, and so on. In fact, rank ag-
gregation is an old problem and has a history stretching back
centuries [Condorcet, 1785]; one famous result is that any
rank aggregation requires some degree of compromise [Arrow,
1950]. Our point in this introduction is not to detail a history
of all the possible methods of rank aggregation, but to give
some perspective on our approach to the problem.

Direct approaches involve finding a permutation explic-
itly – for example, computing the Kemeny optimal ranking
[Kemeny, 1959] or the minimum feedback arc set problem.
These problems are NP-hard [Dwork et al., 2001, Ailon et al.,
2005, Alon, 2006]. An alternate approach is to assign a score
to each item, and then compute a permutation based on
ordering these items by their score, e.g. Saaty [1987]. In
this manuscript, we focus on the second approach. A key
advantage of the computations we propose is that they are
convex problems and efficiently solvable.

While the problem of rank aggregation is old, modern
applications – such as those found in web-applications like
Netflix and Amazon – pose new challenges. First, the data
collected are usually cardinal measurements on the quality
of each item, such as 1–5 stars, received from voters. Second,
the voters are neither experts in the rating domain nor ex-
perts at producing useful ratings. These properties manifest
themselves in a few ways, including skewed and indiscrimi-
nate voting behaviors [Ho and Quinn, 2008]. We focus on
using aggregate pairwise data about items to develop a score
for each item that predicts the pairwise data itself. This
approach eliminates some of the issues with directly utilizing
voters ratings, and we argue this point more precisely in
Section 2.

To explain our method, consider a set of n items, labeled
from 1 to n. Suppose that each of these items has an unknown
intrinsic quality si : 1 ≤ i ≤ n, where si > sj implies that
item i is better than item j. While the si’s are unknown,
suppose we are given a matrix Y where Yij = si − sj . By
finding a rank-2 factorization of Y (there is no rank-1 skew-
symmetric factorization), for example

Y = seT − esT , (1)

we can extract unknown scores. The matrix Y is skew-
symmetric and describes any score-based global pairwise
ranking. (There are other possible rank-2 factorizations
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Table 1: Notation for the paper.

Sym. Interpretation

A(·) a linear map from a matrix to a vector

e a vector of all ones

ei a vector with 1 in the ith entry, 0 elsewhere

‖·‖∗ the nuclear norm

R a rating matrix (voters-by-items)

Y a fitted or model pairwise comparison matrix

Ŷ a measured pairwise comparison matrix

Ω an index set for the known entries of a matrix

of a skew-symmetric matrix, a point we return to later in
Section 3.1.)

Thus, given a measured Ŷ , the goal is to find a minimum
rank approximation of Ŷ that models the elements, and
ideally one that is rank-2. Phrased in this way, it is a natural
candidate for recent developments in the theory of matrix
completion [Candès and Tao, 2010, Recht et al., 2010]. In the
matrix completion problem, certain elements of the matrix
are presumed to be known. The goal is to produce a low-rank
matrix that respects these elements – or at least minimizes
the deviation from the known elements. One catch, however,
is that we require matrix completion over skew-symmetric
matrices for pairwise ranking matrices. Thus, we must solve
the matrix completion problem inside a structured class of
matrices. This task is a novel contribution of our work.
Recently, Gross [2010] also developed a technique for matrix
completion with Hermitian matrices.

With a “completed” matrix Y , the norm of the residual
‖Ŷ −Y ‖ gives us a certificate for the validity of our fit – an
additional piece of information available in this model.

To continue, we briefly summarize our main contributions
and our notational conventions.

Our contributions.
• We propose a new method for computing a rank aggre-

gation based on matrix completion, which is tolerant
to noise and incomplete data.
• We solve a structured matrix-completion problem over

the space of skew-symmetric matrices.
• We prove a recovery theorem detailing when our ap-

proach will work.
• We perform a detailed evaluation of our approach with

synthetic data and an anecdotal study with Netflix
ratings.

Notation.
We try to follow standard notation conventions. Matrices

are bold, upright roman letters, vectors are bold, lowercase
roman letters, and scalars are unbolded roman or Greek
letters. The vector e consists of all ones, and the vector
ei has a 1 in the ith position and 0’s elsewhere. Linear
maps on matrices are written as script letters. An index
set Ω is a group of index pairs. Each ω ∈ Ω is a pair (r, s)
and we assume that the ω’s are numbered arbitrarily, i.e.
Ω = {ω1, . . . , ωk}. Please refer to Table 1 for reference.

Before proceeding further, let us outline the rest of the
paper. First, Section 2 describes a few methods to take voter-

item ratings and produce an aggregate pairwise comparison
matrix. Additionally, we argue why pairwise aggregation is
a superior technique when the goal is to produce an ordered
list of the alternatives. Next, in Section 3, we describe for-
mulations of the noisy matrix completion problem using the
nuclear norm. In our setting, the lasso formulation is the
best choice, and we use it throughout the remainder. We
briefly describe algorithms for matrix completion and focus
on the svp algorithm [Jain et al., 2010] in Section 3.1. We
then show that the svp algorithm preserves skew-symmetric
structure. This process involves studying the singular value
decomposition of skew-symmetric matrices. Thus, by the end
of the section, we’ve shown how to formulate and solve for
a scoring vector based on the nuclear norm. The following
sections describe alternative approaches and show our recov-
ery results. At the end, we show our experimental results.
In summary, our overall methodology is

Ratings (= R)
⇓ (§2)

Pairwise comparisons (= Y )
⇓ (§3)

Ranking scores (= s)
⇓ (sorting)

Rank aggregations.

An example of our rank aggregations is given in Table 2. We
comment further on these in Section 6.3.

Finally, we provide our computational and experimental
codes so that others may reproduce our results:
https://dgleich.com/projects/skew-nuclear

2. PAIRWISE AGGREGATION METHODS
To begin, we describe methods to aggregate the votes

of many voters, given by the matrix R, into a measured
pairwise comparison matrix Ŷ . These methods have been
well-studied in statistics [David, 1988]. In the next section,
we show how to extract a score for each item from the matrix
Ŷ .

Let R be a voter-by-item matrix. This matrix has m
rows corresponding to each of the m voters and n columns
corresponding to the n items of the dataset. In all of the
applications we explore, the matrix R is highly incomplete.
That is, only a few items are rated by each voter. Usually
all the items have a few votes, but there is no consistency in
the number of ratings per item.

Instead of using R directly, we compute a pairwise aggre-
gation. Pairwise comparisons have a lengthy history, dating
back to the first half of the previous century [Kendall and
Smith, 1940]. They also have many nice properties. First,
Miller [1956] observes that most people can evaluate only 5 to
9 alternatives at a time. This fact may relate to the common
choice of a 5-star rating (e.g. the ones used by Amazon, eBay,
Netflix, YouTube). Thus, comparing pairs of movies is easier
than ranking a set of 20 movies. Furthermore, only pairwise
comparisons are possible in certain settings such as tennis
tournaments. Pairwise comparison methods are thus natural
for analyzing ranking data. Second, pairwise comparisons are
a relative measure and help reduce bias from the rating scale.
For these reasons, pairwise comparison methods have been
popular in psychology, statistics, and social choice theory
[David, 1988, Arrow, 1950]. Such methods have also been
adopted by the learning to rank community; see the contents
of Li et al. [2008]. A final advantage of pairwise methods is
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Table 2: The top 15 movies from Netflix generated by our ranking method (middle and right). The left list is
the ranking using the mean rating of each movie and is emblematic of the problems global ranking methods
face when infrequently compared items rocket to the top. We prefer the middle and right lists. See Section 6
and Figure 4 for information about the conditions and additional discussion. LOTR III appears twice because
of the two DVDs editions, theatrical and extended.

Mean Log-odds (all) Arithmetic Mean (30)

LOTR III: Return . . . LOTR III: Return . . . LOTR III: Return . . .
LOTR I: The Fellowship . . . LOTR I: The Fellowship . . . LOTR I: The Fellowship . . .
LOTR II: The Two . . . LOTR II: The Two . . . LOTR II: The Two . . .
Lost: Season 1 Star Wars V: Empire . . . Lost: S1
Battlestar Galactica: S1 Raiders of the Lost Ark Star Wars V: Empire . . .
Fullmetal Alchemist Star Wars IV: A New Hope Battlestar Galactica: S1
Trailer Park Boys: S4 Shawshank Redemption Star Wars IV: A New Hope
Trailer Park Boys: S3 Star Wars VI: Return ... LOTR III: Return . . .
Tenchi Muyo! . . . LOTR III: Return . . . Raiders of the Lost Ark
Shawshank Redemption The Godfather The Godfather
Veronica Mars: S1 Toy Story Shawshank Redemption
Ghost in the Shell: S2 Lost: S1 Star Wars VI: Return ...
Arrested Development: S2 Schindler’s List Gladiator
Simpsons: S6 Finding Nemo Simpsons: S5
Inu-Yasha CSI: S4 Schindler’s List

that they are much more complete than the ratings matrix.
For Netflix, R is 99% incomplete, whereas Y is only 0.22%
incomplete and most entries are supported by many com-
parisons. See Figure 1 for information about the number of
pairwise comparisons in Netflix and MovieLens.

More critically, an incomplete array of user-by-product
ratings is a strange matrix – not every 2-dimensional array of
numbers is best viewed as a matrix – and using the rank of
this matrix (or its convex relaxation) as a key feature in the
modeling needs to be done with care. Consider, if instead of
rating values 1 to 5, 0 to 4 are used to represent the exact
same information, the rank of this new rating matrix will
change. Furthermore, whether we use a rating scale where
1 is the best rating and 5 is worst, or one where 5 is the
best and 1 is the worst, a low-rank model would give the
exact same fit with the same input values, even though the
connotations of the numbers is reversed.

On the other hand, the pairwise ranking matrix that we
construct below is invariant under monotone transformation
of the rating values and depends only on the degree of relative
preference of one alternative over another. It circumvents
the previously mentioned pitfalls and is a more principled
way to employ a rank/nuclear norm model.

We now describe five techniques to build an aggregate
pairwise matrix Ŷ from the rating matrix R. Let α denote
the index of a voter, and i and j the indices of two items.
The entries of R are Rαi. To each voter, we associate a
pairwise comparison matrix Ŷ

α
. The aggregation is usually

computed by something like a mean over Ŷ
α

.
1. Arithmetic mean of score differences The score

difference is Y αij = Rαj −Rαi. The arithmetic mean of
all voters who have rated both i and j is

Ŷij =

∑
α(Rαi −Rαj)

#{α | Rαi, Rαj exist} .

These comparisons are translation invariant.
2. Geometric mean of score ratios Assuming R > 0,

the score ratio refers to Y αij = Rαj/Rαi. The (log)
geometric mean over all voters who have rated both i

and j is

Ŷij =

∑
α(logRαi − logRαj)

#{α | Rαi, Rαj exist} .

These are scale invariant.
3. Binary comparison Here Y αij = sign(Rαj − Rαi).

Its average is the probability difference that the alter-
native j is preferred to i than vice versa

Ŷij = Pr{α | Rαi > Rαk} − Pr{α | Rαi < Rαj}.

These are invariant to a monotone transformation.
4. Strict binary comparison This method is almost

the same as the last method, except that we eliminate
cases where users rated movies equally. That is,

Ŷ αij =


1 Rαi > Rαj

− Rαi = Rαj

−1 Rαi < Rαj .

Again, the average Yij has a similar interpretation
to binary comparison, but only among people who
expressed a strict preference for one item over the
other. Equal ratings are ignored.

5. Logarithmic odds ratio This idea translates binary
comparison to a logarithmic scale:

Ŷij = log
Pr{α | Rαi ≥ Rαj}
Pr{α | Rαi ≤ Rαj}

.

3. RANK AGGREGATION WITH THE
NUCLEAR NORM

Thus far, we have seen how to compute an aggregate
pairwise matrix Ŷ from ratings data. While Ŷ has fewer
missing entries than R – roughly 1-80% missing instead of
almost 99% missing – it is still not nearly complete. In this
section, we discuss how to use the theory of matrix completion
to estimate the scoring vector underlying the comparison
matrix Ŷ . These same techniques apply even when Ŷ is
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(a) MovieLens - 85.49% of total pairwise compar-
isons
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(b) Netflix - 99.77% of total pairwise comparisons

Figure 1: A histogram of the number of pairwise comparisons between movies in MovieLens (left) and
Netflix (right). The number of pairwise comparisons is the number of users with ratings on both movies.
These histograms show that most items have more than a small number of comparisons between them. For
example, 18.5% and 34.67% of all possible pairwise entries have more than 30 comparisons between them.
Largely speaking, this figure justifies dropping infrequent ratings from the comparison. This step allows us
to take advantage of the ability of the matrix-completion methods to deal with incomplete data.

not computed from ratings and is measured through direct
pairwise comparisons.

Let us now state the matrix completion problem formally
[Candès and Recht, 2009, Recht et al., 2010]. Given a matrix
A where only a subset of the entries are known, the goal
is to find the lowest rank matrix X that agrees with A in
all the non-zeros. Let Ω be the index set corresponding to
the known entries of A. Now define A(X) as a linear map
corresponding to the elements of Ω, i.e. A(X) is a vector
where the ith element is defined to be

[A(X)]i = Xωi , (2)

and where we interpret Xωi as the entry of the matrix X
for the index pair (r, s) = ωi. Finally, let b = A(Y ) be the
values of the specified entries of the matrix Y . This idea of
matrix completion corresponds with the solution of

minimize rank(X)

subject to A(X) = b.
(3)

Unfortunately, like the direct methods at permutation mini-
mization, this approach is NP-hard [Vandenberghe and Boyd,
1996].

To make the problem tractable, an increasingly well-known
technique is to replace the rank function with the nuclear
norm [Fazel, 2002]. For a matrix A, the nuclear norm is
defined

‖A‖∗ =

rank(A)∑
i=1

σi(A) (4)

where σi(A) is the ith singular value of A. The nuclear norm
has a few other names: the Ky-Fan n-norm, the Schatten
1-norm, and the trace norm (when applied to symmetric
matrices), but we will just use the term nuclear norm here.
It is a convex underestimator of the rank function on the
unit spectral-norm ball {A : σmax(A) ≤ 1}, i.e. ‖A‖∗ ≤
rank(A)σmax(A) and is the largest convex function with this

property. Because the nuclear norm is convex,

minimize ‖X‖∗
subject to A(X) = b

(5)

is a convex relaxation of (3) analogous to how the 1-norm is
a convex relaxation of the 0-norm.

In (5) we have A(X) = b, which is called a noiseless com-
pletion problem. Noisy completion problems only require
A(X) ≈ b. We present four possibilities inspired by simi-
lar approaches in compressed sensing. For the compressed
sensing problem with noise:

minimize ‖x‖1 subject to Ax ≈ b

there are four well known formulations: lasso [Tibshirani,
1996], qp [Chen et al., 1998], ds [Candès and Tao, 2007]
and bpdn [Fuchs, 2004]. For the noisy matrix completion
problem, the same variations apply, but with the nuclear
norm taking the place of the 1-norm:

lasso

minimize ‖A(X)− b‖2
subject to ‖X‖∗ ≤ τ

ds

minimize ‖X‖∗
subject to σmax(A∗(A(X)− b)) ≤ µ

qp Mazumder et al. [2009]

minimize ‖A(X)− b‖22 + λ ‖X‖∗

bpdn Mazumder et al. [2009]

minimize ‖X‖∗
subject to ‖A(X)− b‖2 ≤ σ

Returning to rank-aggregation, recall the perfect case for
the matrix Y : there is an unknown quality si associated
with each item i and Y = seT − esT . We now assume that
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the pairwise comparison matrix computed in the previous
section approximates the true Y . Given such a Ŷ , our goal
is to complete it with a rank-2 matrix. Thus, our objective:

minimize ‖A(X)− b‖2
subject to ‖X‖∗ ≤ 2 and X = −XT

(6)

where A(·) corresponds to the filled entries of Ŷ . We adopt
the lasso formulation because we want rank(X) = 2, and
‖X‖∗ underestimates rank as previously mentioned. This
problem only differs from the standard matrix completion
problem in one regard: the skew-symmetric constraint. With
a careful choice of solver, this additional constraint comes
“for-free” (with a few technical caveats). It should also be
possible to use the skew-Lanczos process to exploit the skew-
symmetry in the SVD computation. The problem remains
convex because these new equality constraints are linear.

3.1 Algorithms
Algorithms for matrix completion seem to sprout like wild-

flowers in spring: Lee and Bresler [2009], Cai et al. [2008],
Toh and Yun [2009], Dai and Milenkovic [2009], Keshavan
and Oh [2009], Mazumder et al. [2009], Jain et al. [2010].
Each algorithm fills a slightly different niche, or improves a
performance measure compared to its predecessors.

We first explored crafting our own solver by adapting pro-
jection and thresholding ideas used in these algorithms to the
skew-symmetrically constrained variant. However, we real-
ized that many algorithms do not require any modification to
solve the problem with the skew-symmetric constraint. This
result follows from properties of skew-symmetric matrices
we show below.

Thus, we use the svp algorithm by Jain et al. [2010]. For
the matrix completion problem, they found their implemen-
tation outperformed many competitors. It is scalable and
handles a lasso-like objective for a fixed rank approxima-
tion. For completeness, we restate the svp procedure in
Algorithm 1.

Algorithm 1 Singular Value Projection [Jain et al., 2010]:
Solve a matrix completion problem. We use the notation
Ω(X) to denote output of A(X) when A(·) is an index set.

input index set Ω, target values b, target rank k,
maximum rank k, step length η, tolerance ε

1: Initialize X(0) = 0, t = 0
2: repeat
3: Set U (t)Σ(t)V (t)T to be the rank-k SVD of a matrix

with non-zeros Ω and values
Ω(X(t))− η(Ω(X(t))− b)

4: X(t+1) ← U (t)Σ(t)V (t)T

5: t← t+ 1
6: until ‖Ω(X(k))− b‖2 > ε

If the constraint A(X) = b comes from a skew-symmetric
matrix, then this algorithm produces a skew-symmetric ma-
trix as well. Showing this involves a few properties of skew-
symmetric matrices and two lemmas.

We begin by stating a few well-known properties of skew-
symmetric matrices. Let A = −AT be skew-symmetric.
Then all the eigenvalues of A are pure-imaginary and come
in complex-conjugate pairs. Thus, a skew-symmetric matrix
must always have even rank. Let B be a square real-valued
matrix, then the closest skew-symmetric matrix to B (in any

norm) is A = (B −BT )/2. These results have elementary
proofs. We continue by characterizing the singular value
decomposition of a skew-symmetric matrix.

Lemma 1. Let A = −AT be an n × n skew-symmetric
matrix with eigenvalues iλ1,−iλ1, iλ2,−iλ2, . . . , iλj ,−iλj,
where λi > 0 and j = bn/2c. Then the SVD of A is given by

A = U


λ1

λ1
λ2

λ2

...
λj

λj

V T (7)

for U and V given in the proof.

Proof. Using the Murnaghan-Wintner form of a real
matrix [Murnaghan and Wintner, 1931], we can write

A = XTXT

for a real-valued orthogonal matrix X and real-valued block-
upper-triangular matrix T , with 2-by-2 blocks along the
diagonal. Due to this form, T must also be skew-symmetric.
Thus, it is a block-diagonal matrix that we can permute to
the form:

T =


0 λ1
−λ1 0

0 λ2
−λ2 0

. . .

 .
Note that the SVD of the matrix[

0 λ1

−λ1 0

]
=

[
0 1
1 0

] [
λ1 0
0 λ1

] [
−1 0
0 1

]
.

We can use this expression to complete the theorem:

A = X


0 1
1 0

0 1
1 0

. . .


︸ ︷︷ ︸

=U


λ1

λ1
λ2

λ2

. . .



−1 0
0 1

−1 0
0 1

. . .

XT

︸ ︷︷ ︸
=V T

.

Both the matrices U and V are real and orthogonal. Thus,
this form yields the SVD of A.

We now use this lemma to show that – under fairly gen-
eral conditions – the best rank-k approximation to a skew-
symmetric matrix is also skew-symmetric.

Lemma 2. Let A be an n-by-n skew-symmetric matrix,
and let k = 2j be even. Let λ1 ≥ λ2 ≥ . . . ≥ λj > λj+1

be the magnitude of the singular value pairs. (Recall that
the previous lemma showed that the singular values come
in pairs.) Then the best rank-k approximation of A in an
orthogonally invariant norm is also skew-symmetric.

Proof. This lemma follows fairly directly from Lemma 1.
Recall that the best rank-k approximation of A in an orthog-
onally invariant norm is given by the k largest singular values
and vectors. By assumption of the theorem, there is a gap
in the spectrum between the kth and k+1-st singular value.
Thus, taking the SVD form from Lemma 1 and truncating
to the k largest singular values produces a skew-symmetric
matrix.

Finally, we can use this second result to show that the svp
algorithm for the lasso problem preserves skew-symmetry
in all the iterates X(k).
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Algorithm 2 Nuclear Norm Rank Aggregation. The svp
subroutine is given by Algorithm 1.

input ranking matrix R, minimum comparisons c
1: Compute Y from R by a procedure in Section 2.
2: Discard entries in Y with fewer than c comparisons
3: Let Ω be the index set for all retained entries in Y and

b be the values for these entries
4: U ,S,V = svp(index set Ω, values b, rank 2)
5: Compute s = (1/n)USV T e

Theorem 3. Given a set of skew-symmetric constraints
A(·) = b, the solution of the lasso problem from the svp
solver is a skew-symmetric matrix X if the target rank is
even and the dominant singular values stay separated as in
the previous lemma.

Proof. In this proof, we revert to the notation A(X) and
useA∗(z) to denote the matrix with non-zeros in Ω and values
from z. We proceed by induction on the iterates generated
by the svp algorithm. Clearly X(0) is skew-symmetric. In
step 3, we compute the SVD of a skew-symmetric matrix:
A∗(A(X(k))− b). The result, which is the next iterate, is
skew-symmetric based on the previous lemma and conditions
of this theorem.

The svp solver thus solves (6) for a fixed rank problem.
A final step is to extract the scoring vector s from a rank-
2 singular value decomposition. If we had the exact ma-
trix Y , then (1/n)Y e = s − (sT e)/ne, which yields the
score vector centered around 0. The outcome that a rank-
2 UΣV T from svp is not of the form seT − esT is quite
possible because there are many rank-2 skew-symmetric ma-
trices that do not have e as a factor. If we had a full-
but-inconsistent pairwise comparison matrix Y , then us-
ing a Borda count s = (1/n)Y e provides the best least-
squares approximation to s [Jiang et al., 2010]. Formally,
(1/n)Y e = argmins

∥∥Y T − (seT − esT )
∥∥. This discussion

justifies using the scoring vector s = (1/n)UΣV T e derived
from this completed matrix.

Our complete ranking procedure is given by Algorithm 2.

4. OTHER APPROACHES
Now, we briefly compare our approach with other tech-

niques to compute ranking vectors from pairwise comparison
data. An obvious approach is to find the least-squares solu-
tion mins

∑
(i,j)∈Ω(Yi,j − (si − sj))2. This is a linear least

squares method, and is exactly what Massey [1997] pro-
posed for ranking sports teams. The related Colley method
introduces a bit of regularization into the least-squares prob-
lem [Colley, 2002]. By way of comparison, the matrix com-
pletion approach has the same ideal objective, however, we
compute solutions using a two-stage process: first complete
the matrix, and then extract scores.

A related methodology with skew-symmetric matrices un-
derlies recent developments in the application of Hodge the-
ory to rank aggregation [Jiang et al., 2010]. By analogy with
the Hodge decomposition of a vector space, they propose a
decomposition of pairwise rankings into consistent, globally
inconsistent, and locally inconsistent pieces. Our approach
differs because our algorithm applies without restriction on
the comparisons. Freeman [1997] also uses an SVD of a

skew-symmetric matrix to discover a hierarchical structure
in a social network.

We know of two algorithms to directly estimate the item
value from ratings [de Kerchov and van Dooren, 2007, Ho and
Quinn, 2008]. Both of these methods include a technique to
model voter behavior. They find that skewed behaviors and
inconsistencies in the ratings require these adjustments. In
contrast, we eliminate these problems by using the pairwise
comparison matrix. Approaches using a matrix or tensor
factorization of the rating matrix directly often have to
determine a rank empirically [Rendle et al., 2009].

The problem with the mean rating from Netflix in Table 2
is often corrected by requiring a minimum number of rating
on an item. For example, IMDB builds its top-250 movie list
based on a Bayesian estimate of the mean with at least 3000
ratings (imdb.com/chart/top). Choosing this parameter
is problematic as it directly excludes items. In contrast,
choosing the minimum number of comparisons to support
an entry in Y may be easier to justify.

5. RECOVERABILITY
A hallmark of the recent developments on matrix comple-

tion is the existence of theoretical recoverability guarantees
(see Candès and Recht [2009], for example). These guarantees
give conditions under which the solution to the optimization
problems posed in Section 3 is or is nearby the low-rank
matrix from whence the samples originated. In this section,
we apply a recent theoretical insight into matrix completion
based on operator bases to our problem of recovering a scor-
ing vector from a skew-symmetric matrix [Gross, 2010]. We
only treat the noiseless problem to present a simplified anal-
ysis. Also, the notation in this section differs slightly from
the rest of the manuscript, in order to match the statements
in Gross [2010] better. In particular, Ω is not necessarily the
index set, ı represents

√
−1, and most of the results are for

the complex field.
The goal is this section is to apply Theorem 3 from Gross

[2010] to skew-symmetric matrices arising from score differ-
ence vectors. We restate that theorem for reference.

Theorem 4 (Theorem 3, Gross [2010]). Let A be a
rank-r Hermitian matrix with coherence ν with respect to an

operator basis {W i}n
2

i=1. Let Ω ⊂ [1, n2] be a random set of
size |Ω| > O(nrν(1 + β)(logn)2). Then the solution of

minimize ‖X‖∗
subject to trace(X∗W i) = trace(A∗W i) i ∈ Ω

is unique and is equal to A with probability at least 1− n−3.

The definition of coherence follows shortly. On the surface,
this theorem is useless for our application. The matrix
we wish to complete is not Hermitian, it’s skew-symmetric.
However, given a real-valued skew-symmetric matrix Y , the
matrix ıY is Hermitian; and hence, we will work to apply
this theorem to this particular Hermitian matrix.

The following theorem gives us a condition for recovering
the score vector using matrix completion. As stated, this
theorem is not particularly useful because s may be recov-
ered from noiseless measurements by exploiting the special
structure of the rank-2 matrix Y . For example, if we know
Yi,j = si − sj then given si we can find sj . This argument
may be repeated with an arbitrary starting point as long as
the known index set corresponds to a connected set over the
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indices. Instead we view the following theorem as providing
intuition for the noisy problem.

Consider the operator basis for Hermitian matrices:

H = S ∪ K ∪ D where

S = {1/
√

2(eie
T
j + eje

T
i ) : 1 ≤ i < j ≤ n};

K = {ı/
√

2(eie
T
j − eje

T
i ) : 1 ≤ i < j ≤ n};

D = {eieTi : 1 ≤ i ≤ n}.

Theorem 5. Let s be centered, i.e., sT e = 0. Let Y =
seT − esT where θ = maxi s

2
i /(s

T s) and ρ = ((maxi si) −
(mini si))/‖s‖. Also, let Ω ⊂ H be a random set of elements
with size |Ω| ≥ O(2nν(1 + β)(logn)2) where ν = max((nθ +
1)/4, nρ2). Then the solution of

minimize ‖X‖∗
subject to trace(X∗W i) = trace((ıY )∗W i), W i ∈ Ω

is equal to ıY with probability at least 1− n−β.

The proof of this theorem follows directly by Theorem 4 if
ıY has coherence ν with respect to the basis H. We now
show this result.

Definition 6 (Coherence, Gross [2010]). Let A be
n × n, rank-r, and Hermitian. Let UU∗ be an orthogonal
projector onto range(A). Then A has coherence ν with

respect to an operator basis {W i}n
2

i=1 if both

maxi trace(W iUU∗W i) ≤ 2νr/n, and

maxi trace(sign(A)W i)
2 ≤ νr/n2.

For A = ıY with sT e = 0:

UU∗ =
ssT

sT s
− 1

n
eeT and sign(A) =

1

‖s‖
√
n
A.

Let Sp ∈ S, Kp ∈ K, and Dp ∈ D. Note that because
sign(A) is Hermitian with no real-valued entries, both quan-
tities trace(sign(A)Di)

2 and trace(sign(A)Si)
2 are 0. Also,

because UU∗ is symmetric, trace(KiUU∗Kp) = 0. The
remaining basis elements satisfy:

trace(SpUU∗Sp) =
1

n
+
s2
i + s2

j

2sT s
≤ (1/n) + θ

trace(DpUU∗Dp) =
1

n
+

s2
i

sT s
≤ (1/n) + θ

trace(sign(A)Kp)
2 =

2(si − sj)2

nsT s
≤ (2/n)ρ2.

Thus, A has coherence ν with ν from Theorem 5 and with
respect to H. And we have our recovery result. Although,
this theorem provides little practical benefit unless both θ
and ρ are O(1/n), which occurs when s is nearly uniform.

6. RESULTS
We implemented and tested this procedure in two synthetic

scenarios, along with Netflix, movielens, and Jester joke-set
ratings data. In the interest of space, we only present a
subset of these results for Netflix.
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Figure 2: An experimental study of the recoverabil-
ity of a ranking vector. These show that we need
about 6n log n entries of Y to get good recovery in
both the noiseless (left) and noisy (right) case. See
§6.1 for more information.

6.1 Recovery
The first experiment is an empirical study of the recover-

ability of the score vector in the noiseless and noisy case. In
the noiseless case, Figure 2 (left), we generate a score vector
with uniformly distributed random scores between 0 and 1.
These are used to construct a pairwise comparison matrix
Y = seT − esT . We then sample elements of this matrix
uniformly at random and compute the difference between
the true score vector s and the output of steps 4 and 5 of
Algorithm 2. If the relative 2-norm difference between these
vectors is less than 10−3, we declare the trial recovered. For
n = 100, the figure shows that, once the number of samples
is about 6n log n, the correct s is recovered in nearly all the
50 trials.

Next, for the noisy case, we generate a uniformly spaced
score vector between 0 and 1. Then Y = seT − esT +
εE, where E is a matrix of random normals. Again, we
sample elements of this matrix randomly, and declare a
trial successful if the order of the recovered score vector is
identical to the true order. In Figure 2 (right), we indicate
the fractional of successful trials as a gray value between black
(all failure) and white (all successful). Again, the algorithm
is successful for a moderate noise level, i.e., the value of ε,
when the number of samples is larger than 6n logn.

6.2 Synthetic
Inspired by Ho and Quinn [2008], we investigate recovering

item scores in an item-response scenario. Let ai be the center
of user i’s rating scale, and bi be the rating sensitivity of user
i. Let ti be the intrinsic score of item j. Then we generate
ratings from users on items as:

Ri,j = L[ai + bitj + Ei,j ]

where L[α] is the discrete levels function:

L[α] = max(min(round(α), 5), 1)

and Ei,j is a noise parameter. In our experiment, we draw
ai ∼ N(3, 1), bi ∼ N(0.5, 0.5), ti ∼ N(0.1, 1), and Ei,j ∼
εN(0, 1). Here, N(µ, σ) is a standard normal, and ε is a
noise parameter. As input to our algorithm, we sample
ratings uniformly at random by specifying a desired number
of average ratings per user. We then look at the Kendall
τ correlation coefficient between the true scores ti and the
output of our algorithm using the arithmetic mean pairwise
aggregation. A τ value of 1 indicates a perfect ordering
correlation between the two sets of scores.
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Figure 3: The performance of our algorithm (left)
and the mean rating (right) to recovery the order-
ing given by item scores in an item-response theory
model with 100 items and 1000 users. The various
thick lines correspond to average number of ratings
each user performed (see the in place legend). See
§6.2 for more information

Figure 3 shows the results for 1000 users and 100 items
with 1.1, 1.5, 2, 5, and 10 ratings per user on average. We also
vary the parameter ε between 0 and 1. Each thick line with
markers plots the median value of τ in 50 trials. The thin
adjacency lines show the 25th and 75th percentiles of the
50 trials. At all error levels, our algorithm outperforms the
mean rating. Also, when there are few ratings per-user and
moderate noise, our approach is considerably more correlated
with the true score. This evidence supports the anecdotal
results from Netflix in Table 2.

6.3 Netflix
See Table 2 for the top movies produced by our technique

in a few circumstances using all users. The arithmetic mean
results in that table use only elements of Y with at least 30
pairwise comparisons (it is a am all 30 model in the code
below). And see Figure 4 for an analysis of the residuals
generated by the fit for different constructions of the matrix
Ŷ . Each residual evaluation of Netflix is described by a code.
For example, sb all 0 is a strict-binary pairwise matrix Ŷ
from all Netflix users and c = 0 in Algorithm 2 (i.e. accept
all pairwise comparisons). Alternatively, am 6 30 denotes

an arithmetic-mean pairwise matrix Ŷ from Netflix users
with at least 6 ratings, where each entry in Ŷ had 30 users
supporting it. The other abbreviations are gm: geometric
mean; bc: binary comparison; and lo: log-odds ratio.

These residuals show that we get better rating fits by only
using frequently compared movies, but that there are only
minor changes in the fits when excluding users that rate
few movies. The difference between the score-based residu-
als
∥∥Ω(seT − esT )− b

∥∥ (red points) and the svp residuals∥∥Ω(USV T )− b
∥∥ (blue points) show that excluding compar-

isons leads to “overfitting” in the svp residual. This suggests
that increasing the parameter c should be done with care
and good checks on the residual norms.

To check that a rank-2 approximation is reasonable, we
increased the target rank in the svp solver to 4 to investigate.
For the arithmetic mean (6,30) model, the relative residual
at rank-2 is 0.2838 and at rank-4 is 0.2514. Meanwhile, the
nuclear norm increases from around 14000 to around 17000.
These results show that the change in the fit is minimal and
our rank-2 approximation and its scores should represent a
reasonable ranking.

0.2 0.3 0.4 0.5 0.6 0.7

am all 30
am 6 30
gm 6 30
gm all 30
am all 100
am 6 100
sb 6 30
sb all 30
gm all 100
gm 6 100
bc 6 30
bc all 30

bc 6 100
bc all 100
lo all 30
lo 6 30
lo 6 100
lo all 100

sb all 100
sb 6 100

am 6 0
am all 0

bc 6 0
bc all 0
lo 6 0
lo all 0
gm 6 0
gm all 0

sb 6 0
sb all 0

Relative Residual

Figure 4: The labels on each residual show how we
generated the pairwise scores and truncated the Net-
flix data. Red points are the residuals from the
scores, and blue points are the final residuals from
the SVP algorithm. Please see the discussion in §6.3.

7. CONCLUSION
Existing principled techniques such as computing a Ke-

meny optimal ranking or finding a minimize feedback arc set
are NP-hard. These approaches are inappropriate in large
scale rank aggregation settings. Our proposal is (i) measure

pairwise scores Ŷ and (ii) solve a matrix completion problem
to determine the quality of items. This idea is both princi-
pled and functional with significant missing data. The results
of our rank aggregation on the Netflix problem (Table 2)
reveal popular and high quality movies. These are interesting
results and could easily have a home on a “best movies in
Netflix” web page. Such a page exists, but is regarded as
having strange results. Computing a rank aggregation with
this technique is not NP-hard. It only requires solving a
convex optimization problem with a unique global minima.
Although we did not record computation times, the most
time consuming piece of work is computing the pairwise com-
parison matrix Y . In a practical setting, this could easily be
done with a MapReduce computation.

To compute these solutions, we adapted the svp solver for
matrix completion [Jain et al., 2010]. This process involved
(i) studying the singular value decomposition of a skew-
symmetric matrix (Lemmas 1 and 2) and (ii) showing that
the svp solver preserves a skew-symmetric approximation
through its computation (Theorem 3). Because the svp solver
computes with an explicitly chosen rank, these techniques
work well for large scale rank aggregation problems.

We believe the combination of pairwise aggregation and
matrix completion is a fruitful direction for future research.
We plan to explore optimizing the svp algorithm to exploit
the skew-symmetric constraint, extending our recovery result
to the noisy case, and investigating additional data.
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